Exam Seat No: Enroliment No:

C.U.SHAH UNIVERSITY
Wadhwan City
Subject Code : 55CO2MTC4 Summer Examination-2014 Date: 16/06/2014
Subject Name:-Real Analysis-I
Branch/Semester:- M.Sc(Mathematics) /Il Time:02:00 To 5:00

Examination: Regular

Instructions:-

(1) Attempt all Questions of both sections in same answer book / Supplementary
(2) Use of Programmable calculator & any other electronic instrument is prohibited.
(3) Instructions written on main answer Book are strictly to be obeyed.

(4)Draw neat diagrams & figures (If necessary) at right places

(5) Assume suitable & Perfect data if needed

SECTION-I

Q-1 a) Suppose A; and A, be any algebras on X. Is A; U A, always an algebra on
? If no give an example.

b) Show that countably additive measure m is monotonic.

c) LetX ={1,2,3},Is4A = {qb, X, {1}, {2, 3}} an algebra on X ?
d) Define o —algebra.

e) Define measurable function.

Q-2 a) For any element x € R, define m: P(R) — [0;.0] by
ok
m(E) = {0";‘,{: ]
Then show that m is a countably additive- measure.
b) Show that the set of all measurable sets 9t is an algebra in R.

c) Let {E;} be an increasing sequence of measurable sets. Then prove that
m(Up Ey) = lim, m(Ey,).

OR
Q-2 a) LetA be an algebra in X(# ¢). Suppose {4;};>; € A. Then prove that
there exists a sequence {B;};>; € A such that
@) U;d4; = U;B;
(i) B; N By = ¢,j # k.
b) Prove that countably additive measure m is countably sub-additive.

c) Let E be a measurable subset of R. Then show that for every € > 0
arbitrary small there is an open set O D E such that m*(0 — E) < €.

Q-3 a) State and prove Littlewood’s 3" principle.
b) Suppose {f; }n=1 is a sequence of measurable functions on a measurable
domain. Then prove that Slflp fn& i:;f fn are measurable.
¢) If m*(E) = 0, then show that E is measurable. Is the converse true?
OR
Q-3 a) Prove that the outer measure of an interval is its length.
b) Let f be measurable and f = g a.e. Then prove that g is measurable.
c) Define measurable set. Show that ¢ and R are measurable.
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Suppose A and B are disjoint measurable sets with finite measures and f

SECTION-II

be bounded measurable function then show that

fAUBf = fAf + fo

(02)

Let f be bounded in [a, b]. If f is Riemann integrable then prove that f is (02)
measurable and R fab f= f[a n/-

Suppose ¢ is a measurable simple function with ¢ = 0 a.e. Then show that (02)

J¢=o0.

State Beppo-Levi’s theorem.

Suppose ¢ and 1 are two measurable simple functions then prove that

fap+bp=af p+bfy.

O1)

(05)

Let f and g be two bounded measurable functions defined on a measurable
set E of finite measure. If f > g a. e., then prove that

Evaluate lim,,_, o f

Let {f,,} be a sequence of non-negative measurable functions defined on a
measurable set E. Suppose f,, (x) ='f (x) X € E. (pointwise). Then prove

that [ f <M £

Let f be a non-negative measurable fufiction which/is integrable on a
measurable set E. Then prove that for.each €> 0, arbitrary small there

J.f2/9
dx USIHg monotone convergence theorem
OR

exists § > 0 such that for every measurable subset A of E with
m(A) < &, we have [, f <e.

Show that monotonically increasing functions are of bounded variation.

State and prove bounded convergence theorem.
State and prove Lebesgue’s dominated convergence theorem.

OR
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07)

Prove that a function f € BV [a, b] iff f can be expressed as the difference (07)
of two monotonically increasing functions on [a, b].

Let f be bounded measurable function on [a, b]. Set
X

then prove that F'(x)

Fx) = ff(t) dt + F(a)

— f(x) a.e.on[a, b].
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